Data Description

1. PROJECT

Title: Impact of internal wave drag on Arctic sea ice

Funding organisation:

NERC grant "Atmosphere to ocean momentum transfer by sea ice" (NE/M015025/1)

2. DATASET

Title: Simulations with the ocean - sea ice model NEMOv3.6 and CICEv5.1 to study the impact of internal wave drag

A parameterization of the impact of internal waves on momentum transfer at the sea ice-ocean interface based on previous work by McPhee, has been implemented in a sea ice model for the first time. The ice-ocean drag from internal waves is relevant for shallow mixed layer depth and the presence of a density jump at the pycnocline and is also a function of the strength of the stratification beneath the ocean mixed layer and geometry of the ice interface. We present results from a coupled sea ice-ocean model where the parameterization of internal wave drag has been implemented. A full description of model setup is provided in Flocco et al. (Annals of Glaciology, 2024).

Publication Year: 2024

Creator: Daniela Flocco, Danny Feltham & David Schroeder

Organisation: University of Reading

Rights-holder: University of Reading

3. TERMS OF USE

This dataset is licensed by the rights-holder(s) under a Creative Commons Attribution 4.0 International Licence:

https://creativecommons.org/licenses/by/4.0/.

4. CONTENTS

Monthly means from the default NEMO-CICE simulation and the NEMO-CICE

simulation with internal wave drag. The data is stored in netCDF format on the on our

1deg tripolar grid with the following variables:

- -1 hi_m grid cell mean ice thickness [m]
- -2 hs_m grid cell mean snow thickness [m]
- -3 Tsfc_m snow/ice surface temperature [C]
- -4 aice_m ice area (aggregate) [1]
- -5 sice_m bulk ice salinity [ppt]
- -6 fswdn_m down solar flux [W/m^2]
- -7 flwdn_m down longwave flux [W/m^2]
- -8 snow_ai_m snowfall rate [cm/day]
- -9 rain_ai_m rainfall rate [cm/day]
- -10 sst_m sea surface temperature [C]
- -11 sss_m sea surface salinity [ppt]
- -12 frzmlt_m freeze/melt potential [W/m^2]
- -13 fswfac_m shortwave scaling factor [1]
- -14 fswabs_ai_m snow/ice/ocn absorbed solar flux [W/m^2]
- -15 albsni_m snow/ice broad band albedo [%]
- -16 alvdf_m visible dihuse albedo [%]
- -17 alidf_m near IR dihuse albedo [%]
- -18 albice_m bare ice albedo [%]
- -19 albsno_m snow albedo [%]
- -20 albpnd_m melt pond albedo [%]
- -21 flat_ai_m latent heat flux [W/m^2]
- -22 fsens_ai_m sensible heat flux [W/m^2]

-23 flwup_ai_m upward longwave flux [W/m^2] -24 evap_ai_m evaporative water flux [cm/day] -25 Tair_m air temperature [C] -26 congel_m congelation ice growth [cm/day] -27 frazil_m frazil ice growth [cm/day] -28 snoice_m snow-ice formation [cm/day] -29 meltt_m top ice melt [cm/day] -30 melts_m top snow melt [cm/day] -31 meltb_m basal ice melt [cm/day] -32 meltl_m lateral ice melt [cm/day] -33 fresh_ai_m freshwtr flx ice to ocn [cm/day] -34 fsalt_ai_m salt flux ice to ocean [kg/m^2/s] -35 fhocn_ai_m heat flux ice to ocean [W/m^2] -36 fswthru_ai_m SW flux thru ice to ocean [W/m^2] -37 strength_m compressive ice strength [N/m] -38 divu_m strain rate (divergence) [%/day] -39 shear_m strain rate (shear) [%/day] -40 dvidtt_m volume tendency thermo [cm/day] -41 dvidtd_m volume tendency dynamics [cm/day] -42 daidtt_m area tendency thermo [%/day] -43 daidtd_m area tendency dynamics [%/day] -44 dagedtt_m age tendency thermo [day/day] -45 dagedtd_m age tendency dynamics [day/day] -46 mlt_onset_m melt onset date [day of year] -47 frz_onset_m freeze onset date [day of year] -48 trsig_m internal stress tensor trace [N/m^2] -49 ice_present_m fraction of time-avg interval that ice is present [1] -50 iage_m sea ice age [years] -51 FYarea_m first-year ice area

-52 alvl_m level ice area fraction [1] -53 vlvl_m level ice volume [m] -54 ardg_m ridged ice area fraction [1] -55 vrdg_m ridged ice volume [m] -56 dardg1dt_m ice area ridging rate [%/day] -57 dardg2dt_m ridge area formation rate [%/day] -58 dvirdgdt_m ice volume ridging rate [cm/day] -59 opening_m lead area opening rate [%/day] -60 apond_m melt pond fraction of sea ice [1] -61 apond_ai_m melt pond fraction of grid cell [1] -62 hpond_m mean melt pond depth over sea ice [m] -63 hpond_ai_m mean melt pond depth over grid cell [m] -64 ipond_m mean pond ice thickness over sea ice [m] -65 ipond_ai_m mean pond ice thickness over grid cell [m] -66 apeh_m radiation-ehective pond area fraction of sea ice [1] -67 apeh_ai_m radiation-ehective pond area fraction over grid cell [1] -68 hfreebd_m hfreebd: freeboard [m] -69 hdraft_m hdraft: draught [m] -70 hridge_m hridge: ridge height [m] -71 distrdg_m distrdg: distance between ridges [m] -72 hkeel_m hkeel: keel depth [m] -73 dkeel_m dkeel: distance between keels [m] -74 lfloe_m lfloe: floe length [m] -75 dfloe_m dfloe: distance between floes [m] -76 Cdn_atm_m Ca: total ice-atm drag coehicient [none] -77 Cdn_ocn_m Cdn_ocn: total ice-ocn drag coehicient [none] -78 Cdn_atm_skin_m Cdn_atm_skin: neutral skin ice-atm drag coehicient [none] -79 Cdn_atm_floe_m Cdn_atm_floe: neutral floe edge ice-atm drag coehicien [none] -80 Cdn_atm_pond_m Cdn_atm_pond: neutral pond edge ice-atm drag coehicien

[none]

-81 Cdn_atm_rdg_m Cdn_atm_rdg: neutral ridge ice-atm drag coehicient [none] -82 Cdn_ocn_skin_m Cdn_ocn_skin: neutral skin ice-ocn drag coehicient [none] -83 Cdn_ocn_floe_m Cdn_ocn_floe: neutral floe edge ice-ocn drag coehicien [none] -84 Cdn_ocn_keel_m Cdn_ocn_keel: neutral keel ice-ocn drag coehicient [none] -85 Cdn_atm_ratio_m Cdn_atm_ratio: ratio total drag / neutral drag (atm) [none] -86 Cdn_iw_m Cdn_iw: neutral internal wave drag [none] -87 gamma_m gamma: attenuation factor of internal wave drag [none] -88 hmix_m hmix: mixed layer depth from NEMO [none] -89 deltaB_m deltaB: reduced gravity [none] -90 uocn_mix_dn_m uocn_mix_dn: current in ML [none] -91 vocn_mix_dn_m vocn_mix_dn: current in ML [none] -92 sigma_theta_m sigma_theta [none] -93 sigma_theta_up_m sigma_theta_up [none] -94 N2_m N2 [none] -95 aicen_m ice area, categories [1] -96 vicen_m ice volume, categories [m] -97 ardgn_m ridged ice area fraction, category [1] -98 vrdgn_m ridged ice volume, category [m] -99 dardg1ndt_m ice area ridging rate, category [%/day] -100 dardg2ndt_m ridge area formation rate, category [%/day] -101 dvirdgndt_m ice volume ridging rate, category [cm/day] -102 krdgn_m ridging thickness factor, category [1] -103 aparticn_m ridging ice participation function, category [1] -104 aredistn_m ridging ice area redistribution function, category [1] -105 vredistn_m ridging ice volume redistribution function, category [1] -106 araftn m rafted ice area fraction, category [1] -107 vraftn_m rafted ice volume, category [1]

-108 apondn_m melt pond fraction, category [1]

-109 hpondn_m melt pond depth, category [m]

-110 apehn_m ehective melt pond fraction, category [1]

-111 uvel_m ice velocity (x) [m/s]

-112 vvel_m ice velocity (y) [m/s]

-113 uatm_m atm velocity (x) [m/s]

-114 vatm_m atm velocity (y) [m/s]

-115 uocn_m ocean current (x) [m/s]

-116 vocn_m ocean current (y) [m/s]

-117 strairx_m atm/ice stress (x) [N/m^2]

-118 strairy_m atm/ice stress (y) [N/m^2]

-119 strocnx_m ocean/ice stress (x) [N/m^2]

-120 strocny_m ocean/ice stress (y) [N/m^2]

-121 strintx_m internal ice stress (x) [N/m^2]

-122 strinty_m internal ice stress (y) [N/m^2]

-123 sig1_m norm. principal stress 1 [1]

-124 sig2_m norm. principal stress 2 [1]